Data Engineering Essentials using SQL, Python, and PySpark

Learn key Data Engineering Skills such as SQL, Python, Apache Spark (Spark SQL and Pyspark) with Exercises and Projects

Ratings 4.30 / 5.00
Data Engineering Essentials using SQL, Python, and PySpark

What You Will Learn!

  • Setup Environment to learn SQL and Python essentials for Data Engineering
  • Database Essentials for Data Engineering using Postgres such as creating tables, indexes, running SQL Queries, using important pre-defined functions, etc.
  • Data Engineering Programming Essentials using Python such as basic programming constructs, collections, Pandas, Database Programming, etc.
  • Data Engineering using Spark Dataframe APIs (PySpark) using Databricks. Learn all important Spark Data Frame APIs such as select, filter, groupBy, orderBy, etc.
  • Data Engineering using Spark SQL (PySpark and Spark SQL). Learn how to write high quality Spark SQL queries using SELECT, WHERE, GROUP BY, ORDER BY, ETC.
  • Relevance of Spark Metastore and integration of Dataframes and Spark SQL
  • Ability to build Data Engineering Pipelines using Spark leveraging Python as Programming Language
  • Use of different file formats such as Parquet, JSON, CSV etc in building Data Engineering Pipelines
  • Setup Hadoop and Spark Cluster on GCP using Dataproc
  • Understanding Complete Spark Application Development Life Cycle to build Spark Applications using Pyspark. Review the applications using Spark UI.

Description

As part of this course, you will learn all the Data Engineering Essentials related to building Data Pipelines using SQL, Python as Hadoop, Hive, or Spark SQL as well as PySpark Data Frame APIs. You will also understand the development and deployment lifecycle of Python applications using Docker as well as PySpark on multinode clusters. You will also gain basic knowledge about reviewing Spark Jobs using Spark UI.

About Data Engineering

Data Engineering is nothing but processing the data depending on our downstream needs. We need to build different pipelines such as Batch Pipelines, Streaming Pipelines, etc as part of Data Engineering. All roles related to Data Processing are consolidated under Data Engineering. Conventionally, they are known as ETL Development, Data Warehouse Development, etc.

Here are some of the challenges the learners have to face to learn key Data Engineering Skills such as Python, SQL, PySpark, etc.

  • Having an appropriate environment with Apache Hadoop, Apache Spark, Apache Hive, etc working together.

  • Good quality content with proper support.

  • Enough tasks and exercises for practice

This course is designed to address these key challenges for professionals at all levels to acquire the required Data Engineering Skills (Python, SQL, and Apache Spark).

  • Setup Environment to learn Data Engineering Essentials such as SQL (using Postgres), Python, etc.

  • Setup required tables in Postgres to practice SQL

  • Writing basic SQL Queries with practical examples using WHERE, JOIN, GROUP BY, HAVING, ORDER BY, etc

  • Advanced SQL Queries with practical examples such as cumulative aggregations, ranking, etc

  • Scenarios covering troubleshooting and debugging related to Databases.

  • Performance Tuning of SQL Queries

  • Exercises and Solutions for SQL Queries.

  • Basics of Programming using Python as Programming Language

  • Python Collections for Data Engineering

  • Data Processing or Data Engineering using Pandas

  • 2 Real Time Python Projects with explanations (File Format Converter and Database Loader)

  • Scenarios covering troubleshooting and debugging in Python Applications

  • Performance Tuning Scenarios related to Data Engineering Applications using Python

  • Getting Started with Google Cloud Platform to setup Spark Environment using Databricks

  • Writing Basic Spark SQL Queries with practical examples using WHERE, JOIN, GROUP BY, HAVING, ORDER BY, etc

  • Creating Delta Tables in Spark SQL along with CRUD Operations such as INSERT, UPDATE, DELETE, MERGE, etc

  • Advanced Spark SQL Queries with practical examples such as ranking

  • Integration of Spark SQL and Pyspark

  • In-depth coverage of Apache Spark Catalyst Optimizer for Performance Tuning

  • Reading Explain Plans of Spark SQL Queries or Pyspark Data Frame APIs

  • In-depth coverage of columnar file formats and Performance tuning using Partitioning

Who Should Attend!

  • Computer Science or IT Students or other graduates with passion to get into IT
  • Data Warehouse Developers who want to transition to Data Engineering roles
  • ETL Developers who want to transition to Data Engineering roles
  • Database or PL/SQL Developers who want to transition to Data Engineering roles
  • BI Developers who want to transition to Data Engineering roles
  • QA Engineers to learn about Data Engineering
  • Application Developers to gain Data Engineering Skills

TAKE THIS COURSE

Tags

  • Apache Spark
  • Python
  • SQL
  • Data Engineering

Subscribers

68637

Lectures

623

TAKE THIS COURSE



Related Courses